HyNet North West

ENVIRONMENTAL STATEMENT (VOLUME III)

Appendix 18.1 Baseline Information

HyNet North West Carbon Dioxide Pipeline DCO
Planning Act 2008
The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulations 5(2)(a)
Document Reference Number D.6.3.18.1
Applicant: Liverpool Bay CCS Limited Inspectorate Reference; EN070007
English Version

QUALITY CONTROL

$\underline{\text { Document Reference }}$	$\underline{\text { D.6.3.18.1 }}$			
$\underline{\text { Document Owner }}$	$\underline{\text { WSP }}$			
$\underline{\text { Revision }}$	$\underline{\text { Date }}$	$\underline{\text { Comments }}$	$\underline{\text { Author }}$	$\underline{\text { Approver }}$
\underline{A}	$\underline{\text { September }}$	$\underline{\text { Submitted with DCO application }}$	$\underline{\text { FM }}$	$\underline{\text { EI }}$
\underline{B}	$\underline{\text { June 2023 }}$	$\underline{\text { Updated for ES Addendum design change }}$	$\underline{\text { FM }}$	$\underline{\text { HP }}$

TABLE OF CONTENTS

1. APPENDIX 18.1 BASELINE 1
1.1. Introduction 1
2. MAIN RIVERS 2
2.1. East Central Drain 2
2.2. West Central Drain 4
2.3. Hapsford Brook 6
2.4. Gale Brook 8
2.5. Thornton Uplands 10
2.6. Thornton Main Drain 12
2.7. River Gowy 14
2.8. Stanney Main Drain 16
2.9. Stanney Mill Brook 18
2.10. Backford Brook 20
2.11. Seahill Drain 22
2.12. Sealand Main Drain 24
2.13. Dee Estuary 26
2.14. Hawarden Brook 28
2.15. Broughton Brook 30
2.16. Sandycroft Drain 32
2.17. Chester Road Drain North 34
2.18. Chester Road Drain Tributary 1 and 2 36
2.19. WESTERN BOUNDARY DRAIN 37
3. ORDINARY WATERCOURSES 38
3.1. Glass Factory Ditch 38
3.2. Elton Lane Ditch 1, 2, 4 and 6 40
3.3. Elton Lane South Ditch. 42
3.4. Elton Marsh 1, 2, 3, 10, 11, 12, and 13 43
3.5. Elton Brook Tributary 1 45
3.6. Halls Green Lane Brook 47
3.7. Thornton Ditch 1, 2, 3, 4, 5 and 6 48
3.8. Gowy Tributary 2 50
3.9. Wervin Hall Ditch Tributary 52
3.10. Canal Ditch. 54
3.11. Collinge Wood Brook 55
3.12. Rake Lane Brook 57
3.13. Friars Park Ditch 59
3.14. Grove Road Ditch 61
3.15. Gypsy Lane Brook 62
3.16. Overwood Ditch 64
3.17. Finchetts Gutter Tributary 66
3.18. Seahill Tributary 2 68
3.19. Railway Ditches 1 and 2 70
3.20. Mancot Brook and tributary 72
3.21. Oakfield Ditch 1 and 3 74
3.22. Willow Park Brook 75
3.23. Aston Hall Brook Tributary 77
3.24. Aston Hall Brook 78
3.25. New Inn Brook 80
3.26. Alltami Brook 82
3.27. Wepre Brook 84
3.28. Northop Brook 87
3.29. Northop Brook Tributary 1 and 2 89
3.30. Little Lead Brook 91
3.31. Nant-y-Fflint 93
3.32. Wepre Brook Tributary 1 94
3.33. Goldfinch Meadow Drain 95
3.34. Marsh Lane Drain 95
4. CANALS 97
4.1. Shropshire Union Canal 97
4.2. Manchester Ship Canal 99
1.1.2. The baseline information is presented as Main Rivers, Ordinary Watercourses
1.1.3. More detailed baseline information for Water Framework Directive quality

1.1.

INTRODUCTION
1.1.1. location of the Study Area.

This appendix presents the baseline information for surface water bodies within the Study Area of the Water Resources and Flood Risk Assessment for the DCO Proposed Development. The full assessment is contained in Chapter 18 Water Resources and Flood Risk (Volume II). and Canals. The watercourses are listed in each section in order from East to West along the DCO Proposed Development. Please refer to Figure 18-1 Watercourses (Volume IV) for the locations of these watercourses and the elements for screened in water bodies is provided in Annex C of Appendix 18.3 - Water Framework Directive Assessment (Volume III).

2.1.
 EAST CENTRAL DRAIN

Catchment area	$1.02 \mathrm{~km}^{2}$
Key hydraulic connections	Flows into West Central Drain
River Condition Score	Moderate
Catchment description	The catchment mostly comprises grassland with some arable and horticultural land uses. A smaller proportion of built-up land cover and woodland. The catchment has an elevation between -4.9-40 mAOD).
Study reach description	The watercourse is a trapezoidal artificial channel which is incised and not connected with the floodplain. Water depth is between $0.5-0.8 \mathrm{~m}$ whilst bankfull width is 5-6.5m. Bed material is silt and organic matter.

	The riparian zone on the left bank is grazed, whilst the right bank is woodland. In-channel vegetation is limited. The East Central Drain has provided drainage for the Ince Marshes since at least 1885. The East Central Drain has maintained a similar planform since 1885, to present day.
Interaction with the DCO Proposed Development	Ince AGI is located within 8m of this watercourse and the surface water drainage system from this AGI will connect to this watercourse.

2.2. WEST CENTRAL DRAIN

	mixture of steep and shallow banks through the Newbuild Infrastructure Boundary. Bed material is predominantly silt and organic matter. The riparian zone comprises grazed grassland which is frequently wet. There are tall grasses along both banks of the watercourses. The West Central Drain has provided drainage for the Ince Marshes since at least 1885. The Western Central Drain has maintained a similar form since 1914.
Interaction with the DCO Proposed Development	West Central Drain will be crossed by the Newbuild Carbon Dioxide Pipeline in one location via open cut. The watercourse would also be crossed by vehicles using existing access tracks over existing culverts in the Newbuild Infrastructure Boundary.

2.3. HAPSFORD BROOK

	With regards to bed material, there is extensive silt cover with some accumulations of organic matter. There is some emergent reeds and linear leaved aquatic vegetation. There is a low diversity of riparian vegetation, with the banks being largely bare. The riparian zone is grazed pasture which is frequently wet. The planform morphology of the channel has been unchanged since 1903, though the watercourse was culverted following the construction of the M56 roadway (1968-1971).
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.4. GALE BROOK

Study reach description	The channel appears to have been artificially straightened and is a trapezoidal cut channel in the study area. Bankfull width varies between 2.5 and 6 m, with water depth approximately $0.2-0.3 \mathrm{~m}$.
The channel bed material is homogenously silty.	
The riparian zone is characterised by a lack of riparian habitat and	
vegetation complexity. It is comprised of mostly tilled arable land on both	
banks with a narrow buffer comprising short and tall herbs and grasses.	
There are some areas of scrub, shrub and trees.	
Downstream of the study reach, the Gale Brook was reconfigured to flow	
beneath the Essar Stanlow Refinery but has maintained its planform	
since 1945.	

2.5. THORNTON UPLANDS

	The bed material is a mixture of sediment, with the presence of gravel - pebble sized sediments. There is evidence of some sand, with extensive silt and clay components. No organic materials were present at the time of survey. The riparian zone is mostly farmland with some residential and farm building. The banks comprise extensive bare earth, with some short creeping herbs and grasses, tall herbs and grasses. Scrubs, shrubs and a few trees and saplings were also noted on the bank top. The channel has maintained a similar planform since 1884-1900.
Interaction with the DCO Proposed Development	Thornton Uplands will be crossed by the Newbuild Carbon Dioxide Pipeline via open trench.

2.6. THORNTON MAIN DRAIN

Study reach description	The watercourse is an artificial cut channel, which has been artificially straightened and lacks geomorphic diversity. Bankfull width varies between $4.5-6 \mathrm{~m}$ and depth between 0.8-1m. Bed material is mostly silt with extensive cover of unvegetated bare sediment, some emergent reeds and floating aquatic vegetation. The riparian zone is characterised by short herbs and grasses, extensive cover of tall herbs and grasses, emergent reeds and linear-leaved plants. Concrete bank protection and sheet piling farms the banks of the channel on the approach to the M56 culvert. The channel has maintained a similar planform since 1884 - 1900 .
Interaction with the DCO Proposed Development	Thornton Main Drain is crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.7. RIVER GOWY

	There are a variety of geomorphic pressures (e.g. poor soil, nutrient, and livestock management, contaminated land, ecological discontinuity, ground water abstraction, pollution from wastewater industry and landfill). The catchment has a maximum elevation of 43 m ASL (Helsby Hill).
Study reach description	The channel is heavily modified, with generally shallow channel banks, obviously reshaped, and with set-back embankments. Bankfull width is $6.5-8 \mathrm{~m}$ and water depth is 0.8-1m. Some berms and eroding cliffs were noted within the Newbuild Infrastructure Boundary. Nest holes were observed in the channel banks. Bed material is silt with extensive cover of unvegetated bare sediment and some emergent and submerged aquatic vegetation. The riparian zone is mostly grazed pasture comprising predominantly grasses, creeping herbs and taller vegetation. The riparian zone is frequently wet. The confluence of the Gowy and Mersey has remained in the same place since at least 1892. However, the course of the Gowy upstream of this point has been heavily modified with evidence of straightening and realignment. The middle course of the channel has been canalised and flood embankments existing on both banks of the Gowy through the study reach.
Interaction with the	
DCO Proposed	
Development	The Gowy will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-09).

2.8. STANNEY MAIN DRAIN

	approximately 5.5 m and water depth approximately 0.5 m , with benches present on the banks of the channel.
Bed material is silt with extensive cover of bare sediment. The riparian zone is grazed farmland comprising short grasses with some tall herbs and grasses, shrubs and scrub and some emergent reeds/linear- leaved/horsetails on the banks. The channel has retained its planform, as a network of cut ditches, since 1885 though some sections have been realigned. Following construction of the Ellesmere Port Oil Refinery (post 1949 -1965), the confluence with the Gowy was moved further upstream to the south of the A5117 (approx., 420 m downstream from the contemporary position).	
Interaction with the DCO Proposed Development	Stanney Main Drain will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.9. STANNEY MILL BROOK

Catchment description	Stanney Mill Brook drains agricultural and pastural land, with the surrounding land uses being farmland, agricultural buildings, roadways, suburban (Picton, Mickle Trafford) and peat bogs. It has a maximum catchment altitude of (45 mAOD).
Study reach description	The watercourse is a cut channel that has been artificially straightened and has a bankfull width of $4-7 \mathrm{~m}$ and water depth of $0.05-0.5 \mathrm{~m}$. Bed material is mostly silt, with some bare unvegetated bed and berms present. The channel is choked with vegetation. The riparian zone is predominantly grazed farmland comprising short grasses, The banks have extensive cover of emergent reeds/linear-leaved/horsetails, along with some short and tall herbs and grasses. Stanney Mill Brook has retained the same form since 1913.
Interaction with the DCO Proposed Development	Stanney Mill Brook will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.10. BACKFORD BROOK

	channel habitat diversity. In addition, there are mature trees lining the channel with fallen trees and extensive large wood habitat along the reach upstream of the field boundary culvert. Downstream of the field culvert the watercourse flows through a modified reach featuring armoured banks and a trapezoidal cross section. The riparian zone in this reach has fewer trees and fallen trees and uninterrupted flow. The river bed substrate is made of sand and silt, with traces of organic matter. The riparian zone is mostly pasture, with a single line of mature trees along the bank top of the watercourses. The treeline is more mature in the reach upstream of the field culvert. No change in planform can be seen from existing online maps (from 1982 onwards).
Interaction with the DCO Proposed Development	Backford Brook will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.11. SEAHILL DRAIN

	The riverbed morphology is slow-glide with silt as the dominant particle size. The riparian zone is arable agriculture.
Interaction with the DCO Proposed Development	Seahill Drain will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.12. SEALAND MAIN DRAIN

	The bed material is largely dominated by silt particles and low morphological diversity. The riparian zone is primarily arable agriculture. No change in planform can be seen from existing online maps (from 1982 onwards).
Interaction with the DCO Proposed Development	Sealand Main Drain will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut. The watercourse will also be crossed by construction vehicles in two other locations using existing access tracks via existing bridges / culverts.

2.13. DEE ESTUARY

Catchment area	136.7 km ${ }^{2}$
Key hydraulic connections	The Dee is the downstream receptors of many watercourses scoped into this assessment. The Dee is tidal up to Chester and flows out to the North Wales coastal water body.
River Condition Score	Moderate
Catchment description	Major estuary with extensive mudflats and saltmarsh habitat, with entire estuary area designated as a SAC, SSSI and SPA. Land use is a mix of rural agriculture, industrial, urban areas (Flint, West Kirby, Neston, Heswall, Connah's Quay and the City of Chester at the historic head of the estuary). Estuary is macrotidal, with a 7.7 mAOD tidal height on a spring tide and a 4.1 mAOD tidal height on a neap tide. Approximately 90% of the estuary area is estimated to dry out in a large spring low tide.

Study reach description	The Dee through the Newbuild Infrastructure Boundary is homogenous with a channel width of approximately 90m. There are flood embankments on both banks with the left bank embankment set back approximately 30m from the channel. The channel bank showed signs of slumping due to repetitive wetting and drying due to the tidal flows in the channel.
Interaction with the DCO Proposed Development	The Dee will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-28). It is also the downstream receptor of several watercourses which are crossed using open cut.

2.14. HAWARDEN BROOK

River Condition Score	Not surveyed due to land access restrictions
Catchment description	This watercourse and its small low-lying catchment have been heavily modified by the constriction of the Dee and draining of the floodplain. The predominant land use is pastoral farming and the airfield.
Study reach description	Downstream of the B5129 the watercourse flows through an artificially incised, re-sectioned channel with a trapezoidal cross section. Whilst the channel is mostly unchanged since 1988, the catchment was heavily modified by the construction of the Airbus factory and runway.
Interaction with the DCO Proposed Development	The watercourse is not crossed by the Newbuild Carbon Dioxide Pipeline It will be crossed via a new temporary crossing during the construction phase.

2.15. BROUGHTON BROOK

Catchment area	$11.72 \mathrm{~km}^{2}$
Key hydraulic connections	The Broughton Brook flows to the River Dee at Station Road. Along the B5129 it is joined by several tributaries flowing north-eastwards from Hawarden. There are drains along Chester Road which connect to the Broughton Brook prior to it joining the River Dee. The watercourse is disconnected from its floodplain is it is within an incised channel.
River Condition Score	Fairly Poor
Catchment description	The catchment has a high degree of human influence on watercourses and the landscape, with the surrounding land use predominantly arable farming, improved grassland and woodland. Elevation varies from ~ 157 mAOD to 8 mAOD .

Study reach description	Broughton Brook channel is a cut trapezoidal drainage ditch, with consistent a bankfull width and water depth of 2 m and 0.25 m, respectively. The bed material is predominantly silt with some gravels and pebbles. Whilst the watercourse has a bare channel bed, there are some emergent reeds/linear leaved or horsetails. The riparian zone is homogenous throughout the study area, with taller grasses on bank face and bank top, the B5129 on one bank and arable farming on the other. The planform of the channel has remained unchanged since 1913.
Interaction with the DCO Proposed Development	The Broughton Brook will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-30).

2.16. SANDYCROFT DRAIN

Catchment area	$2.99 \mathrm{~km}^{2}$
Key hydraulic connections	Onward connection into Broughton Brook. It receives flows from roadside ditches of Moor Lane.
River Condition Score	Fairly Poor
Catchment description	The catchment drains the surrounding roads, urban areas, and arable fields and is relatively flat, with the elevation varying from 80-8mAOD.
Study reach description	The channel is a cut trapezoidal drainage ditch that appears to have been artificially straightened. The channel has a consistent bankfull width and water depth (1 m and 0.05 m , respectively). The bed material is predominantly silt with some sands. Whilst the channel bed sediment is bare, there are some emergent broadleaved and amphibious plants. The riparian zone is homogenous, with a

	hedgerow between the channel and the adjacent pastoral fields on one bank. The majority of the riparian zone is fields or road infrastructure. The planform of the channel has remained unchanged since 1913.
Interaction with the DCO Proposed Development	The Sandycroft Drain will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-30) where it is parallel with Broughton Brook. At Moor Lane, the watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

2.17. CHESTER ROAD DRAIN NORTH

Catchment area	1.67 km ${ }^{2}$
Key hydraulic connections	This watercourse is hydraulically connected to both the Broughton Brook (southeast) and Aston Hall Brook (Northwest). The channel is not connected to the floodplain.
River Condition Score	Poor
Catchment description	The catchment drains farmland and arable fields, with extensive urbanisation north of the watercourse. The catchment is relatively flat catchment, with the elevation varying from $80-8 \mathrm{mAOD}$.
Study reach description	Large sections of the watercourse are culverted or in an artificially incised channel with steep banks, with no variation in channel width (bankfull width 4 m) and depth (0.3 m) within the study area.

	The watercourse has a silt substrate, with a lack of geomorphic bed features. There is a lack of diversity in the riparian vegetation; however, in the open sections there is defunct hedgerow on the bank top with road and car parking within the riparian zone. There is bare earth on the bank faces, with some short creeping herbs and grasses Despite becoming progressively culverted, the channel has retained its contemporary planform since at least 1892.
Interaction with the DCO Proposed Development	This watercourse is within the Newbuild Infrastructure Boundary. The pit for the proposed trenchless crossings of Chester Road (TRS-31 and TRS-32) would be adjacent to this watercourse.

2.18. CHESTER ROAD DRAIN TRIBUTARY 1 AND 2

	The channel has a predominantly silt substrate with a lack of geomorphic diversity and bedforms. The riparian zone on the left bank is arable farmland, whilst on the right bank it is road infrastructure. Despite becoming progressively culverted, the channel has retained its contemporary planform since at least 1892.
Interaction with the DCO Proposed Development	This watercourse is within the Newbuild Infrastructure Boundary. The pit for the proposed trenchless crossing of Chester Road (TRS-31 and TRS- 32) would be adjacent to this watercourse. The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline however the method is not yet determined.

2.19. WESTERN BOUNDARY DRAIN

Catchment area	$0.5 \mathrm{~km}^{2}$
Key hydraulic connections	This watercourse flows northwards and connects to West Central Drain.
River Condition Score	The watercourse is in a culvert within the Newbuild Infrastructure Boundary therefore it is assigned Poor condition
Catchment description	The catchment is mostly comprised of arable and horticultural land with some areas of woodland, marshes, industrial and residential land use. The catchment's elevation ranges between approximately 3 m to 36 m AOD.
Study reach description	A watercourse survey has not been undertaken at this site.
Interaction with the DCO Proposed Development	The extension of the Newbuild Infrastructure Boundary to enable access to Ince AGI from the adopted highway (PSO6) includes a small section of the Western Boundary Drain which flows through a culvert beneath Grinsome Road.

3.

3.1. GLASS FACTORY DITCH

Catchment description	The majority of the catchment is used for industrial purposes.
Study reach description	The watercourse flows through a straightened channel with re-sectioned banks. There are some concrete structures within the channel, likely used for sluices and penstocks historically. The watercourse is culverted beneath two access tracks before joining the West Central Drain.
Interaction with the DCO Proposed Development	The watercourse is not crossed by the Newbuild Carbon Dioxide Pipeline however it will be crossed by vehicles via existing access tracks via existing bridges / culverts.

3.2. ELTON LANE DITCH 1, 2, 4 AND 6

(Elton Lane Ditch 4)

Interaction with the DCO Proposed Development

Elton Lane Ditch 1 and 4 will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut. Other ditches are located within the Newbuild Infrastructure Boundary. Elton Lane Ditch 1 is currently culverted beneath a field access. This culvert will be replaced with a longer culvert to provide permanent access to Ince AGI. Ince AGI is located within 10 m of Elton Lane Ditch 1 and 2.

3.3. ELTON LANE SOUTH DITCH

Catchment area	$<1 \mathrm{~km} 2$
Key hydraulic connections	Elton Lane South Ditch joins the West Central Drain.
River Condition Score	Not surveyed due to access restrictions.
Catchment description	Grazed farmland and private railway.
Study reach description	The ditch was not surveyed due to access restrictions.
Interaction with the DCO Proposed Development	The ditch would be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-01).

3.4 ELTON MARSH 1, 2, 3, 10, 11, 12, AND 13

Interaction with the DCO Proposed Development

Elton Marsh 1, 2,3, 11, 12 and 13 could be crossed by the Newbuild Carbon Dioxide Pipeline via open cut. The exact route of the Newbuild Carbon Dioxide Pipeline is not determined at this stage.

3.5. ELTON BROOK TRIBUTARY 1

Catchment area	$<1 \mathrm{~km}^{2}$
Key hydraulic connections	Flows westwards into Gale Brook. The ditch is disconnected from its floodplain by incision and artificial bunding.
River Condition Score	Poor

Catchment description	Elton Brook Tributary 1 drains arable and horticultural land to the south of the A5117 and includes both the Essar Stanlow Refinery and the suburb of Elton.
Study reach description	The channel is a cut trapezoidal, cut ditch with bunding along its south bank. There is potential evidence of physical damage along the ditch. It is unlikely that water levels are maintained throughout the summer (likely less than 50cm in depth). The bed material is comprised of silt and organic accumulation. The riparian zone is characterised by a lack of both marginal and aquatic vegetation. The Elton Brook Tributary 1 was formed between 1965-1970 and the channel has maintained its contemporary position since its construction. However, a travellers' site was constructed in the location of the drain between 2009 -2010 creating bunding on the south bank.
Interaction with the DCO Proposed	Elton Brook Tributary 1 will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-05 and TRS-06).
Development	

3.6. HALLS GREEN LANE BROOK

Catchment area	$<1 \mathrm{~km}^{2}$
Key hydraulic connections	Halls Green Lane Brook drains into the Thornton Uplands. The watercourse is disconnected from its floodplain.
River Condition Score	Poor
Catchment description	Thornton Uplands drains agricultural and pastural land in the headwaters. The channel rises from farm ditches, around 1.4 km southwest of Dunham-on-the-Hill (10 mAOD).
Study reach description	The watercourse is a trapezoidal cut channel that appears to have been artificially straightened along the side of Halls Green Lane. There is potential evidence of physical damage along the ditch. It is unlikely that water levels are maintained throughout the summer (likely less than 50cm in depth). The bed material is comprised of silt and organic accumulation. The riparian zone is characterised by a lack marginal vegetation and a lack of diversity of aquatic vegetation. The channel has maintained a similar planform since 1884 - 1900.
Interaction with the DCO Proposed Development	Halls Green Lane Brook may be crossed by the Newbuild Carbon Dioxide Pipeline via open cut (depending on the final alignment of the Newbuild Carbon Dioxide Pipeline).

3.7.
 THORNTON DITCH 1, 2, 3, 4, 5 AND 6

Thornton Ditch	Thornton Ditch 5
Catchment area	$<1 \mathrm{~km}^{2}$
Key hydraulic connections	Thornton Ditches 1 and 2 connect to Stanney Main Drain whilst Thornton Ditches $3,4,5$ and 6 connect to Thornton Main Drain, both of which discharge to the River Gowy north of the DCO Proposed Development.
River Condition Score	Thornton Ditch 1: Moderate (Ditch survey) Thornton Ditch 2, 3, 4, 5 and 6: Poor (Ditch survey)
Catchment description	The catchment is predominantly grazed farmland or peat bog, most of which is within the fluvial floodplain of the River Gowy and is frequently wet.
Study reach description	All the ditches are artificial straight trapezoidal channels designed to drain the floodplain so it can be used for agriculture. Thornton Ditch 1 and 2 are ephemeral and covered in short grasses with some taller reeds.

	Thornton Ditch 3, 4, 5 and 6 are wider ditches which are likely to hold water all year round. Approximate bankfull width is 3 m and water depth is 0.5 m.
Bed material is silt.	

3.8. GOWY TRIBUTARY 2

Study reach description	The channel appears to have been artificially straightened and has reshaped banks at the three locations where surveys were carried out. Bankfull river width is $1.5-2.75 \mathrm{~m}$ and water depth is $0.05-0.1 \mathrm{~m}$. The bed material is comprised of gravel and pebbles, but mostly silts and clays with extensive coverage of bare sediment. The riparian zone is largely extensive cover of bare earth, with some vegetation and evidence of bank erosion (j-shaped and leaning trees). Gowy Tributary 2 has retained the same form since 1913.
Interaction with the DCO Proposed Development	Three sections of Gowy Tributary 2 are within the Newbuild Infrastructure Boundary. It is anticipated that the watercourse would not be crossed by the Newbuild Carbon Dioxide Pipeline as the exact location is not yet determined. However if crossed, it would be via open cut. The most upstream surveyed section will be crossed by a new temporary access track during the construction phase.

3.9.

	The bed material is sand, silt and gravel. The riparian zone has a lack of emergent, submerged, and floating leaved plants with some signs of potential eutrophication. The channel planform has remained consistent since 1892.
Interaction with the DCO Proposed Development	The ditch will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-17).

3.10. CANAL DITCH

Catchment area	$1.74 \mathrm{~km}^{2}$
Key hydraulic connections	Canal ditch flows westwards parallel to the canal. It is joined by Colling Wood Brook and Rake Lane Brook before it joins Backford Brook which becomes Finchetts Gutter.
River Condition Score	Not surveyed due to land access restrictions
Catchment description	A small catchment of predominantly arable land.
Study reach description	This watercourse has not been surveyed due to land access restrictions. The banks and surrounding land are heavily vegetated with grasses and scrub.
Interaction with the DCO Proposed Development	The watercourse will receive runoff from Rock Bank BVS. It will not be crossed by the Newbuild Carbon Dioxide Pipeline.

3.11. COLLINGE WOOD BROOK

	The bed material is fine, with no visible channel bed features. The bed of the channel is unconsolidated. There is a continuous riparian buffer along right bank, which has a uniform and simple riparian zone structure. The bank materials are composed of cohesive earth. There is simple bank face vegetation, with a semicontinuous tree line on the right bank. The channel has retained the same planform since 1892.
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.12. RAKE LANE BROOK

Catchment area	$3.3 \mathrm{~km}^{2}$
Key hydraulic connections	This watercourse flows beneath the Shropshire Union Canal and joins Finchetts Gutter.
River Condition Score	Moderate
Catchment description	The watercourse is $\sim 0.7 \mathrm{~km}$ long, with the surrounding land use being pasture, grassland, and woodland. Elevation varies from 24 m to 20 mAOD .
Study reach description	The watercourse has a shallow and narrow wetted channel. At the time of the survey it had a water depth of 0.05 m . Channel width varied between 0.5 and 0.8 m .

	The riverbed substrate is rich in silt and organic particles. The riparian zone is primarily permanently vegetated agricultural land use. The fields on both banks are grazed and there is a hedgerow along the right bank. No change in planform can be seen from existing online maps (from 1982 onwards).
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.13. FRIARS PARK DITCH

	permanently vegetated agriculture. There is a line of mature trees along the bank top of the watercourse, with more vegetation on the bank face. No change in planform can be seen from existing online maps (from 1982 onwards).
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut. Construction vehicles will also cross this watercourse via the existing crossing to the south of the potential crossing location.

3.14. GROVE ROAD DITCH

Catchment area	$<1 \mathrm{~km}^{2}$
Key hydraulic connections	The connections of Grove Road Ditch are not confirmed. It is likely that it connects to Gypsy Lane Brook.
River Condition Score	Not surveyed.
Catchment description	Small catchment comprising farmland and rural settlement.
Study reach description	This watercourse was not surveyed. It is a small roadside ditch along a field boundary.
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.15. GYPSY LANE BROOK

	artificially straightened. Channel depth is around 1.5 m , and bankfull width is around 1.5 m At time of survey there was an obscured view of the channel bed, precluding identification of the channel bed material. Within the Newbuild Infrastructure Boundary, the riparian zone includes a hedgerow along the right bank of the channel though predominant land use is arable and pastoral farming. There is simple bank top and bank face vegetation. The channel has retained its planform since 1892.
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.16. OVERWOOD DITCH

	silt. Within the Newbuild Infrastructure Boundary, there is a hedgerow along both banks of the channel, though the predominant land use within the riparian zone is pastoral farming. There is simple bank top and bank face vegetation. The channel has retained its planform since 1892.
Interaction with the DCO Proposed Development	The watercourse will receive runoff from Mollington BVS. It may be crossed by the Newbuild Carbon Dioxide Pipeline as the exact alignment has not yet been determined.

3.17. FINCHETTS GUTTER TRIBUTARY

Fairly Good section within Newbuild Infrastructure Boundary

Moderate section within Newbuild Infrastructure Boundary
Catchment area $\quad 3.21 \mathrm{~km}^{2}$

Key hydraulic connections	Finchetts Gutter Tributary flows southeast towards Blacon, under which it is culverted. It joins the Finchetts Gutter south of Saughall Road.
River Condition Score	Fairly good in the upper reach and moderate in the lower reach within the Newbuild Infrastructure Boundary.
Catchment description	The catchment is rural in nature, with mainly open farmland and has some small areas of trees standing. Relatively shallow gradient and unconfined floodplain. The watercourse is approximately 7 km in length, with an elevation range between 10 and 46 mAOD. The catchment drains local farmland and arable fields
Study reach description	The channel is slightly sinuous, although it appears to have realigned for agriculture in the past. Bankfull width is up to 10m in some locations within the study reach. Water depths are shallow, at approximately 0.2m on average throughout surveyed reach. The bed material is primarily gravel and pebble, with areas of sand and silt present on channel bed. Within the riparian zone, the is channel lined with trees and scrub on both banks. Beyond the immediate treeline there is agricultural land on both banks.
No significant changes in channel course since the 1st edition OS maps (1888)	
Interaction with the DCO Proposed Development	This watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.18.

	No change in planform can be seen from existing online maps (from 1982 onwards).
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.19. RAILWAY DITCHES 1 AND 2

Catchment area	<1km ${ }^{2}$
Key hydraulic connections	The railway ditches are ephemeral. It is assumed that they connect to Hawarden Brook which flows northwards to the Dee Estuary.
River Condition Score	Poor
Catchment description	Small catchment modified by artificial drains and the railway. The surrounding land use is predominantly arable and horticultural, with some urban development.
Study reach description	These are small ditches, and the bed material is mostly silt and organic matter. The riparian zone is heavily modified, a railway embankment on one side of the ditch and farmland on the other side. There is an absence of marginal vegetation along most of the ditches. Since 1913, the channel has retained its planform.

3.20.

Mancot Brook - Downstream Reach

Mancot Brook - Upstream Reach

Mancot Brook Tributary

Catchment area	$1.66 \mathrm{~km}^{2}$
Key hydraulic connections	Onward connection into Chester Road Drain South, which flows beneath the B5129 to join the Broughton Brook.
River Condition Score	Moderate
Catchment description	The catchment is predominantly rural, thus mostly draining farmland and arable fields. This comprises improved and neutral grassland, broadleaved, mixed and yew woodland. The catchment is relatively flat, with the elevation varying from 80 - 8 mAOD.
Study reach description	The channel is incised in places, with bankfull channel width varying between 1.5-3m, whilst water depth is between 0.05 - 0.07m. The channel has a silt substrate with extensive cover of bare earth. Some broad and linear leaved aquatic vegetation is present. At the location of the upstream proposed open cut crossing, the riparian zone is dominated by short grassland pasture. At the downstream proposed crossing location there is a hedge along the left bank and a private drive on the right bank within the riparian zone. Since 1913, the channel has retained its planform as a drainage channel to the surrounding arable land. The channel has been elongated to follow field boundaries, therefore resulting in a shallower gradient compared to its likely natural state. Mancot Brook Tributary is ephemeral and flows through a grazed pasture. It has extensive grass cover to bed and banks.
Interaction with the DCO Proposed Development	This watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline up to three times via open cut.

3.21. OAKFIELD DITCH 1 AND 3

3.22.

Upstream Fairly Poor reach

Downstream Moderate reach

Catchment area	$0.55 \mathrm{~km}^{2}$
Key hydraulic connections	The Willow Park Brook flows north-eastwards to Chester Road Drain North.

River Condition Score	Upstream reach is Fairly Poor Downstream reach is Moderate
Catchment description	Relatively small catchment comprising agricultural fields and residential estates. There is a small on-line pond in the upper catchment.
Study reach description	Bankfull channel width varies between 1 m and 2 m. Depth varies between 0.3 and 1.5 m. The substrate primarily comprises gravels and pebbles, with some silt and sand deposits, potentially introduced due to poaching activity. The channel is extensively poached, with hardcore/rubble used for partial bank protection on the right bank. Riparian vegetation is mostly short grasses and isolated trees on the right bank with hedgerow on the left bank. The bank top land use is pastoral farming.
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.23. ASTON HALL BROOK TRIBUTARY

Catchment area	$<1 \mathrm{~km}^{2}$
Key hydraulic connections	Aston Hall Brook Tributary flows northwards towards Deeside where it joins Aston Hall Brook.
River Condition Score	No survey completed (culvert)
Catchment description	This watercourse drains a predominantly rural and suburban catchment.
Study reach description	Within the Newbuild Infrastructure Boundary the watercourse is located within a culvert. This flows adjacent to a children's' playground and arable fields.
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless methods (TRS-35). The watercourse receive runoff from Aston Hill BVS.

3.24. ASTON HALL BROOK

	riparian zone on the right bank is comprised of short grasses and pastoral farming, with a mixture of vegetation where it flows through private gardens. No changes recorded since $1^{\text {st }}$ edition OS map.
Interaction with the DCO Proposed Development	This watercourse is within the Newbuild Infrastructure Boundary but is not crossed by the Newbuild Carbon Dioxide Pipeline.

3.25. NEW INN BROOK

Catchment area	$2.68 \mathrm{~km}^{2}$
Key hydraulic connections	Downstream connectivity to Wepre Brook
River Condition Score	Fairly Good
Catchment description	The catchment drains farmland and arable fields. The catchment is predominantly rural though there is extensive urbanisation in the upper catchment (Buckley). Elevation varies from 166-62 mAOD.
Study reach description	The watercourse has shallow channel banks, a bankfull width around 0.7 m and channel depth around 0.2 m . At the downstream end of the reach within the Newbuild Infrastructure Boundary the watercourse becomes multi-thread.

	The bed material is predominantly a silt substrate with some clays and sands. The channel bed has some linear leaved vegetation growing at the margins and the channel bed is covered in fine layer of debris.			
The riparian zone on the left bank is historically pasture which has been				
left unused and has therefore grown more mature vegetation which is				
dominated by long grassy vegetation, shrubs and scrub. On the right				
bank the riparian zone includes mixed hedgerow and arable fields.				
The channel has retained a similar planform since 1898 but has been				
culverted where developments have been implemented (post 1949).		$	$	Interaction with the
:---	:---			
DCO Proposed				
Development	\quad	This watercourse will be crossed by the Newbuild Carbon Dioxide		
:---				
Pipeline via open cut.				

3.26.

Catchment area	$6.52 \mathrm{~km}^{2}$
Key hydraulic connections	The Alltami Brook joins Wepre Brook downstream of the Newbuild Infrastructure Boundary and has approximately 10 tributaries upstream of the study area.
River Condition Score	Fairly Good
Catchment description	The catchment drains farmland and arable fields. There is extensive urbanisation in the upper catchment (Buckley, New Brighton). Downstream the watercourse flows through a narrow gorge to Wepre Brook. There is a clay quarry within the catchment. Elevation varies from $170-76 \mathrm{mAOD}$.
Study reach description	The watercourse flows through a naturally deep valley, with bankfull width varying between $6-7 \mathrm{~m}$ and water depth between $0.2-0.3 \mathrm{~m}$. There is varied roughness through the reach which has pools, riffles,

	steps and glides. There is some active bank erosion with undercut banks within the study reach. The predominant structure of the river bed is bedrock which is overlain with some boulders, cobble, gravel and silts, with some bedrock outcrops throughout the reach. The Alltami Brook has an unvegetated channel bed. Within the riparian zone, the bank top comprises mature woodland on the left bank and pasture on the right bank.
The watercourse has retained a similar plan form since 1892, though there has been some localised straightening and culverting of the watercourse (namely following the construction of the A55).	
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut.

3.27.

Wepre Brook A55 reach

Wepre Brook Brookside reach

Wepre Brook, No	Hall reach
Catchment area	$9.57 \mathrm{~km}^{2}$
Key hydraulic connections	Wepre Brook has several tributaries, mostly from the south of the catchment. The Alltami Brook and New Inn Brook both connect to the Wepre Brook downstream of the study area.
River Condition Score	A55 reach: moderate; Brookside reach: fairly poor; Northrop Hall reach: fairly poor
Catchment description	The majority of the catchment is rural and agricultural. There are small settlements in the catchment (Northop, Northop Hall and Soughton). The A55 and Brookside run parallel to the Wepre Brook through the study reach.
Study reach description	At the A55 reach the channel is narrow (approximately 1 m width and 0.3 m water depth). Through Brookside and Northop Hall reaches the watercourse is wider (width up to 2 m and water depth 0.2 m). The bed material is well mixed generally, with areas of both gravelpebble mix and cobbles. Some areas of sand were observed overlaying armoured substrate in the A55 reach. At the A55 reach, the left bank is short grass pasture for grazing whilst the right bank is plantation woodland and scrub. Through Brookside and

	Northop Hall there are more mature trees on both banks. There are gabion baskets supporting the right bank through the Brookside reach. The riparian zone through the Northop Hall reach is more substantial than other reaches. Wepre Brook follows largely the same course as depicted on the 1st edition OS maps (1888).
Interaction with the DCO Proposed Development	There are four locations where this watercourse is within the Newbuild Infrastructure Boundary. At the Brookside reach the watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open cut. The A55 reach of the Wepre Brook is no longer applicable to the assessment due to the relocation of Northop Hall AGI as part of Change
Request 1, which includes the relocation of its outfall from this reach to Wepre Brook Tributary 1. The Northop Hall and Brookside reaches of	
Wepre Brook remains unchanged and valid. At the A55 reach the watercourse will receive runoff from Northop Hall AGl.	

3.28. NORTHOP BROOK

Study reach description	Channel width varies between 2 m and 3 m. Water depth is approximately 0.5 m.
	Bed material composed primarily of sands and silt throughout surveyed reach. The riparian buffer zone is composed of scrub and shrubs with some mature trees and fallen trees. $1^{\text {st }}$ edition OS map (1888) shows minimal channel changes. The reservoir was also in-situ at this time too.
Interaction with the DCO Proposed Development	The watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless (TRS-43) methods.

3.29. NORTHOP BROOK TRIBUTARY 1 AND 2

Northop Brook Tributary 1

Northop Brook Tributary 2

Catchment area	Both <1km²
Key hydraulic connections	Both tributaries join the Northop Brook which flows northwards and becomes the Lead Brook before joining the Dee.
River Condition Score	Not surveyed
Catchment description	The catchments of these tributaries are predominantly arable farmland.
Study reach description	Both watercourses flow along field boundaries. They both have a hedgerow on the right bank. The watercourses are likely ephemeral and their riparian zones are dominated by tilled land.
Interaction with the DCO Proposed Development	Both watercourse will be crossed by the Newbuild Carbon Dioxide Pipeline via open trench.

3.30. LITTLE LEAD BROOK

Catchment area	$0.51 \mathrm{~km}^{2}$
Key hydraulic connections	This watercourse flows northwards towards the Dee Estuary
River Condition Score	Moderate
Catchment description	A small catchment which is dominated by agriculture with no suburban areas. This is a steep catchment which slopes towards the Dee. There is a small on-line pond attenuating flow upstream of the study reach.
Study reach description	Channel bankfull width is approximately 1m throughout the survey reach. Water depth is very shallow (0.05m). Channel bed composed of gravels and pebbles, with significant areas of sands and silts present. The riparian zone on the right bank is an ancient

	woodland comprising of mature trees and fallen trees. On the left bank the riparian zone is tilled land behind occasional trees on the bank top. Channel course unchanged since $1^{\text {st }}$ edition OS maps, although online pond is relatively recent (post 1971).
Interaction with the DCO Proposed Development	The watercourse will receive runoff from the Flint AGI. The watercourse will not be crossed by the Newbuild Carbon Dioxide Pipeline.

3.31. NANT-Y-FFLINT

	pebbles throughout surveyed reach. At the time of the survey, the riparian zone was comprised of wooded valley and was heavily vegetated. No significant areas of channel change recorded since $1^{\text {st }}$ edition OS maps (1888)
Interaction with the DCO Proposed Development	The watercourse will receive runoff from Cornist Lane BVS.

3.32.
 WEPRE BROOK TRIBUTARY 1

Catchment area	$\leq 0.5 \mathrm{~km}^{2}$
Key hydraulic connections	This watercourse flows in a southeast direction and joins Wepre Brook downstream of the A55.
River Condition Score	Fairly Poor
Catchment description	The catchment is mostly comprised of arable and horticultural land. The catchment's elevation ranges between approximately 91 m to 123 m AOD.
Study reach description	Wepre Brook Tributary 1 discharges from a culvert into a shallow trapezoidal ditch for approximately 100 m through a field used for grazing. The ditch then flows along a hedgerow for approximately 200 m before flowing through a culvert under the A55. On the day of the survey, the channel was wet but this was likely due to prolonged rainfall which preceded the survey. It is likely that this channel is dry in summer months.
Interaction with the DCO Proposed Development	The relocation of Northop Hall AGI (PSO3) will result in the AGI drainage to discharge to Wepre Brook Tributary 1.

3.33. GOLDFINCH MEADOW DRAIN

Catchment area	$\leq 0.5 \mathrm{~km}^{2}$
Key hydraulic connections	This watercourse flows northwards and connects to West Central Drain.
River Condition Score	The watercourse is in a culvert within the Newbuild Infrastructure Boundary therefore it is assigned Poor condition
Catchment description	The catchment is mostly comprised of arable and horticultural land with some areas of woodland, marshes, industrial and residential land use. The catchment's elevation ranges between approximately 3m to 36m AOD.
Study reach description	Goldfinch Meadow Drain flows through a culvert beneath Grinsome Road. Based on aerial imagery Goldfinch Meadow Drain is choked with vegetation at the point where it enters the culvert beneath Grinsome Road and downstream of the culvert.
Interaction with the	
DCO Proposed	The extension of the Newbuild Infrastructure Boundary to enable access to Ince AGl from the adopted highway (PSO6) includes a small section of the Goldfinch Meadow Drain which flows through a culvert beneath Grinsome Road.
Development	

3.34. MARSH LANE DRAIN

Catchment area	$\leq 0.5 \mathrm{~km}^{2}$
Key hydraulic connections	This watercourse flows into Goldfinch Meadow Drain
River Condition Score	The watercourse is in a culvert within the Newbuild Infrastructure Boundary therefore it is assigned Poor condition
Catchment description	The catchment is mostly comprised of arable and horticultural land with some areas of woodland, marshes, industrial and residential land use. The catchment's elevation ranges between approximately 3 m to 36 m AOD.
Study reach description	Marsh Lane Drain flows through a culvert beneath Grinsome Road. Downstream of the culvert on Grinsome Road, Marsh Lane Drain enters a pond before discharging to Goldfinch Meadow Drain.

Interaction with the DCO Proposed Development

The extension of the Newbuild Infrastructure Boundary to enable access to Ince AGI from the adopted highway (PS06) includes a small section of the Marsh Lane Drain which flows through a culvert beneath Grinsome Road.
4. CANALS

4.1 SHROPSHIRE UNION CANAL

Study reach description	Width uniformly 10 m across, depth approximately 1.5 m , with the canal level being higher than adjacent ground level. Canal bed is composed of silts. Within the riparian zone, there is sheet piling on both banks, with a towpath on the right bank. Additional branches of canal added throughout the early $19^{\text {th }}$ century, completed in 1835.
Interaction with the DCO Proposed Development	The canal will be crossed by the Newbuild Carbon Dioxide Pipeline via trenchless (TRS-17) methods.

4.2. MANCHESTER SHIP CANAL

	Channel construction in the late $19^{\text {th }}$ century, no changes to course in intervening years.
Interaction with the DCO Proposed Development	The Manchester Ship Canal is not within the Newbuild Infrastructure Boundary. Water from Ince Marshes is pumped into the canal during peak flows and therefore is a downstream receptor of activities within Ince Marshes.

